For this capstone project we will be analyzing some 911 call data from Kaggle. The data contains the following fields:
Just go along with this notebook and try to complete the instructions or answer the questions in bold using your Python and Data Science skills!
Import numpy and pandas
import pandas as pd
import seaborn as sns
import datetime
Import visualization libraries and set %matplotlib inline.
import matplotlib.pyplot as plt
sns.set_style('whitegrid')
%matplotlib inline
Read in the csv file as a dataframe called df
df = pd.read_csv('911.csv')
Check the info() of the df
df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 99492 entries, 0 to 99491 Data columns (total 9 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 lat 99492 non-null float64 1 lng 99492 non-null float64 2 desc 99492 non-null object 3 zip 86637 non-null float64 4 title 99492 non-null object 5 timeStamp 99492 non-null object 6 twp 99449 non-null object 7 addr 98973 non-null object 8 e 99492 non-null int64 dtypes: float64(3), int64(1), object(5) memory usage: 6.8+ MB
Check the head of df
df.head()
lat | lng | desc | zip | title | timeStamp | twp | addr | e | |
---|---|---|---|---|---|---|---|---|---|
0 | 40.297876 | -75.581294 | REINDEER CT & DEAD END; NEW HANOVER; Station ... | 19525.0 | EMS: BACK PAINS/INJURY | 2015-12-10 17:40:00 | NEW HANOVER | REINDEER CT & DEAD END | 1 |
1 | 40.258061 | -75.264680 | BRIAR PATH & WHITEMARSH LN; HATFIELD TOWNSHIP... | 19446.0 | EMS: DIABETIC EMERGENCY | 2015-12-10 17:40:00 | HATFIELD TOWNSHIP | BRIAR PATH & WHITEMARSH LN | 1 |
2 | 40.121182 | -75.351975 | HAWS AVE; NORRISTOWN; 2015-12-10 @ 14:39:21-St... | 19401.0 | Fire: GAS-ODOR/LEAK | 2015-12-10 17:40:00 | NORRISTOWN | HAWS AVE | 1 |
3 | 40.116153 | -75.343513 | AIRY ST & SWEDE ST; NORRISTOWN; Station 308A;... | 19401.0 | EMS: CARDIAC EMERGENCY | 2015-12-10 17:40:01 | NORRISTOWN | AIRY ST & SWEDE ST | 1 |
4 | 40.251492 | -75.603350 | CHERRYWOOD CT & DEAD END; LOWER POTTSGROVE; S... | NaN | EMS: DIZZINESS | 2015-12-10 17:40:01 | LOWER POTTSGROVE | CHERRYWOOD CT & DEAD END | 1 |
What are the top 5 zipcodes for 911 calls?
zip_codes = df['zip']
zip_codes.head()
0 19525.0 1 19446.0 2 19401.0 3 19401.0 4 NaN Name: zip, dtype: float64
What are the top 5 townships (twp) for 911 calls?
town_ships = df['twp']
town_ships.head()
0 NEW HANOVER 1 HATFIELD TOWNSHIP 2 NORRISTOWN 3 NORRISTOWN 4 LOWER POTTSGROVE Name: twp, dtype: object
Take a look at the 'title' column, how many unique title codes are there?
df['title'].nunique()
110
In the titles column there are "Reasons/Departments" specified before the title code. These are EMS, Fire, and Traffic. Use .apply() with a custom lambda expression to create a new column called "Reason" that contains this string value.
For example, if the title column value is EMS: BACK PAINS/INJURY , the Reason column value would be EMS.
df['Reason'] = df['title'].apply(lambda title: title.split(':')[0])
df['Reason'].head()
0 EMS 1 EMS 2 Fire 3 EMS 4 EMS Name: Reason, dtype: object
What is the most common Reason for a 911 call based off of this new column?
df['Reason'].value_counts()
EMS 48877 Traffic 35695 Fire 14920 Name: Reason, dtype: int64
Now use seaborn to create a countplot of 911 calls by Reason.
sns.countplot(x='Reason', data=df)
<AxesSubplot:xlabel='Reason', ylabel='count'>
Now let us begin to focus on time information. What is the data type of the objects in the timeStamp column?
type(df['timeStamp'].iloc[0])
pandas._libs.tslibs.timestamps.Timestamp
You should have seen that these timestamps are still strings. Use pd.to_datetime to convert the column from strings to DateTime objects.
df['timeStamp'] = pd.to_datetime(df['timeStamp'])
df['Hour'] = df['timeStamp'].apply(lambda time: time.hour)
df['Month'] = df['timeStamp'].apply(lambda time: time.month)
df['Day of Week'] = df['timeStamp'].apply(lambda time: time.dayofweek)
df.head()
lat | lng | desc | zip | title | timeStamp | twp | addr | e | Hour | Month | Day of Week | Reason | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 40.297876 | -75.581294 | REINDEER CT & DEAD END; NEW HANOVER; Station ... | 19525.0 | EMS: BACK PAINS/INJURY | 2015-12-10 17:40:00 | NEW HANOVER | REINDEER CT & DEAD END | 1 | 17 | 12 | 3 | EMS |
1 | 40.258061 | -75.264680 | BRIAR PATH & WHITEMARSH LN; HATFIELD TOWNSHIP... | 19446.0 | EMS: DIABETIC EMERGENCY | 2015-12-10 17:40:00 | HATFIELD TOWNSHIP | BRIAR PATH & WHITEMARSH LN | 1 | 17 | 12 | 3 | EMS |
2 | 40.121182 | -75.351975 | HAWS AVE; NORRISTOWN; 2015-12-10 @ 14:39:21-St... | 19401.0 | Fire: GAS-ODOR/LEAK | 2015-12-10 17:40:00 | NORRISTOWN | HAWS AVE | 1 | 17 | 12 | 3 | Fire |
3 | 40.116153 | -75.343513 | AIRY ST & SWEDE ST; NORRISTOWN; Station 308A;... | 19401.0 | EMS: CARDIAC EMERGENCY | 2015-12-10 17:40:01 | NORRISTOWN | AIRY ST & SWEDE ST | 1 | 17 | 12 | 3 | EMS |
4 | 40.251492 | -75.603350 | CHERRYWOOD CT & DEAD END; LOWER POTTSGROVE; S... | NaN | EMS: DIZZINESS | 2015-12-10 17:40:01 | LOWER POTTSGROVE | CHERRYWOOD CT & DEAD END | 1 | 17 | 12 | 3 | EMS |
Notice how the Day of Week is an integer 0-6. Use the .map() with this dictionary to map the actual string names to the day of the week:
dmap = {0:'Mon',1:'Tue',2:'Wed',3:'Thu',4:'Fri',5:'Sat',6:'Sun'}
dmap = {0:'Mon',1:'Tue',2:'Wed',3:'Thu',4:'Fri',5:'Sat',6:'Sun'}
df['Day of Week'] = df['Day of Week'].map(dmap)
Now use seaborn to create a countplot of the Day of Week column with the hue based off of the Reason column.
sns.countplot(x='Day of Week', data=df, hue='Reason')
# To relocate the legend
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
<matplotlib.legend.Legend at 0x7f77ae7d56a0>
Now do the same for Month:
sns.countplot(x='Month', data=df, hue='Reason')
# To relocate the legend
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
<matplotlib.legend.Legend at 0x7f77ae6fdcd0>
Did you notice something strange about the Plot?
You should have noticed it was missing some Months, let's see if we can maybe fill in this information by plotting the information in another way, possibly a simple line plot that fills in the missing months, in order to do this, we'll need to do some work with pandas...
Now create a gropuby object called byMonth, where you group the DataFrame by the month column and use the count() method for aggregation. Use the head() method on this returned DataFrame.
byMonth = df.groupby('Month').count()
byMonth.head()
lat | lng | desc | zip | title | timeStamp | twp | addr | e | Hour | Day of Week | Reason | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Month | ||||||||||||
1 | 13205 | 13205 | 13205 | 11527 | 13205 | 13205 | 13203 | 13096 | 13205 | 13205 | 13205 | 13205 |
2 | 11467 | 11467 | 11467 | 9930 | 11467 | 11467 | 11465 | 11396 | 11467 | 11467 | 11467 | 11467 |
3 | 11101 | 11101 | 11101 | 9755 | 11101 | 11101 | 11092 | 11059 | 11101 | 11101 | 11101 | 11101 |
4 | 11326 | 11326 | 11326 | 9895 | 11326 | 11326 | 11323 | 11283 | 11326 | 11326 | 11326 | 11326 |
5 | 11423 | 11423 | 11423 | 9946 | 11423 | 11423 | 11420 | 11378 | 11423 | 11423 | 11423 | 11423 |
Now create a simple plot off of the dataframe indicating the count of calls per month.
byMonth['twp'].plot()
<AxesSubplot:xlabel='Month'>
Now see if you can use seaborn's lmplot() to create a linear fit on the number of calls per month. Keep in mind you may need to reset the index to a column.
sns.lmplot(x='Month', y='twp', data=byMonth.reset_index())
<seaborn.axisgrid.FacetGrid at 0x7f77ae59adc0>
Create a new column called 'Date' that contains the date from the timeStamp column. You'll need to use apply along with the .date() method.
df['Date'] = df['timeStamp'].apply(lambda time: time.date())
Now groupby this Date column with the count() aggregate and create a plot of counts of 911 calls.
df.groupby('Date').count()['twp'].plot()
plt.tight_layout()
Now recreate this plot but create 3 separate plots with each plot representing a Reason for the 911 call
df[df['Reason'] == 'Traffic'].groupby('Date').count()['twp'].plot()
plt.title('Traffic')
plt.tight_layout()
df[df['Reason'] == 'Fire'].groupby('Date').count()['twp'].plot()
plt.title('Fire')
plt.tight_layout()
df[df['Reason'] == 'EMS'].groupby('Date').count()['twp'].plot()
plt.title('EMS')
plt.tight_layout()
Now let's move on to creating heatmaps with seaborn and our data. We'll first need to restructure the dataframe so that the columns become the Hours and the Index becomes the Day of the Week. There are lots of ways to do this, but I would recommend trying to combine groupby with an unstack method. Reference the solutions if you get stuck on this!
df.head()
lat | lng | desc | zip | title | timeStamp | twp | addr | e | Hour | Month | Day of Week | Reason | Date | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 40.297876 | -75.581294 | REINDEER CT & DEAD END; NEW HANOVER; Station ... | 19525.0 | EMS: BACK PAINS/INJURY | 2015-12-10 17:40:00 | NEW HANOVER | REINDEER CT & DEAD END | 1 | 17 | 12 | Thu | EMS | 2015-12-10 |
1 | 40.258061 | -75.264680 | BRIAR PATH & WHITEMARSH LN; HATFIELD TOWNSHIP... | 19446.0 | EMS: DIABETIC EMERGENCY | 2015-12-10 17:40:00 | HATFIELD TOWNSHIP | BRIAR PATH & WHITEMARSH LN | 1 | 17 | 12 | Thu | EMS | 2015-12-10 |
2 | 40.121182 | -75.351975 | HAWS AVE; NORRISTOWN; 2015-12-10 @ 14:39:21-St... | 19401.0 | Fire: GAS-ODOR/LEAK | 2015-12-10 17:40:00 | NORRISTOWN | HAWS AVE | 1 | 17 | 12 | Thu | Fire | 2015-12-10 |
3 | 40.116153 | -75.343513 | AIRY ST & SWEDE ST; NORRISTOWN; Station 308A;... | 19401.0 | EMS: CARDIAC EMERGENCY | 2015-12-10 17:40:01 | NORRISTOWN | AIRY ST & SWEDE ST | 1 | 17 | 12 | Thu | EMS | 2015-12-10 |
4 | 40.251492 | -75.603350 | CHERRYWOOD CT & DEAD END; LOWER POTTSGROVE; S... | NaN | EMS: DIZZINESS | 2015-12-10 17:40:01 | LOWER POTTSGROVE | CHERRYWOOD CT & DEAD END | 1 | 17 | 12 | Thu | EMS | 2015-12-10 |
dayHour = df.groupby(by=['Day of Week','Hour']).count()['Reason'].unstack()
dayHour.head()
Hour | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ... | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day of Week | |||||||||||||||||||||
Fri | 275 | 235 | 191 | 175 | 201 | 194 | 372 | 598 | 742 | 752 | ... | 932 | 980 | 1039 | 980 | 820 | 696 | 667 | 559 | 514 | 474 |
Mon | 282 | 221 | 201 | 194 | 204 | 267 | 397 | 653 | 819 | 786 | ... | 869 | 913 | 989 | 997 | 885 | 746 | 613 | 497 | 472 | 325 |
Sat | 375 | 301 | 263 | 260 | 224 | 231 | 257 | 391 | 459 | 640 | ... | 789 | 796 | 848 | 757 | 778 | 696 | 628 | 572 | 506 | 467 |
Sun | 383 | 306 | 286 | 268 | 242 | 240 | 300 | 402 | 483 | 620 | ... | 684 | 691 | 663 | 714 | 670 | 655 | 537 | 461 | 415 | 330 |
Thu | 278 | 202 | 233 | 159 | 182 | 203 | 362 | 570 | 777 | 828 | ... | 876 | 969 | 935 | 1013 | 810 | 698 | 617 | 553 | 424 | 354 |
5 rows × 24 columns
Now create a HeatMap using this new DataFrame.
plt.figure(figsize=(12,6))
sns.heatmap(dayHour, cmap='magma')
<AxesSubplot:xlabel='Hour', ylabel='Day of Week'>
Now create a clustermap using this DataFrame.
plt.figure(figsize=(12,6))
sns.clustermap(dayHour, cmap='magma')
<seaborn.matrix.ClusterGrid at 0x7f77adb3fe20>
<Figure size 864x432 with 0 Axes>
Now repeat these same plots and operations, for a DataFrame that shows the Month as the column.
dayMonth = df.groupby(by=['Day of Week','Month']).count()['Reason'].unstack()
dayMonth.head()
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 12 |
---|---|---|---|---|---|---|---|---|---|
Day of Week | |||||||||
Fri | 1970 | 1581 | 1525 | 1958 | 1730 | 1649 | 2045 | 1310 | 1065 |
Mon | 1727 | 1964 | 1535 | 1598 | 1779 | 1617 | 1692 | 1511 | 1257 |
Sat | 2291 | 1441 | 1266 | 1734 | 1444 | 1388 | 1695 | 1099 | 978 |
Sun | 1960 | 1229 | 1102 | 1488 | 1424 | 1333 | 1672 | 1021 | 907 |
Thu | 1584 | 1596 | 1900 | 1601 | 1590 | 2065 | 1646 | 1230 | 1266 |
plt.figure(figsize=(12,6))
sns.heatmap(dayMonth, cmap='magma')
<AxesSubplot:xlabel='Month', ylabel='Day of Week'>
plt.figure(figsize=(12,6))
sns.clustermap(dayMonth, cmap='magma')
<seaborn.matrix.ClusterGrid at 0x7f77ae8034c0>
<Figure size 864x432 with 0 Axes>